BIO 240 Control of Microbial Growth Lab Report

BIO 240 Control of Microbial Growth Lab Report
This lab about testing the effect of disinfectants and antibiotics on the growth of microorganisms. Please study the Exercise in the lab manual. In this exercise, a bacterial culture is spread over a plate completely and various paper discs, each saturated with a different disinfectant or antibiotic, are disposed on the plate in an equidistance fashion and the plate is incubated overnight. The plate is then analyzed for the growth of culture with respect to a given disc. If bacterial strain is sensitive, meaning it is killed/inhibited by what is in this disc, then bacteria will not grow around the disc forming a large “no-growth-zone” or “growth-inhibition-zone.” If the bacterial strain is resistant to the disinfectant/antibiotic, it will grow close to/into the disc forming a very small “no-growth-zone.” The diameter of this zone is then measured in millimeter (mm) and recorded. This data is then compared to a reference table to identify if the microorganism is resistant or sensitive to the disinfectant/antibiotic in that particular disc. See example-1 and example-2Preview the document plates.
In the lab, each group would culture a separate bacterial strain on 4 plates and dispense various discs on each plate: two plates would get 8 discs each with a different antibiotics and the other two plates would get 8 discs each with a different disinfectants (see the names of each antibiotic and disinfectant in the first two tables). For the assignment, download this Lab Exercise 10 worksheetPreview the document, answer the questions and fill the tables according to the data populated in the first two tables. Make sure you calculate the averages in last columns and last rows also. Then, upload your file to this assignment.
To prevent the spread of human disease, it is necessary to control the growth and abundance of microbes in or on various items frequently used by humans. Inanimate items, such as doorknobs, toys, or towels, which may harbor microbes and aid in disease transmission, are called fomites. Two factors heavily influence the level of cleanliness required for a particular fomite and, hence, the protocol chosen to achieve this level. The first factor is the application for which the item will be used. For example, invasive applications that require insertion into the human body require a much higher level of cleanliness than applications that do not. The second factor is the level of resistance to antimicrobial treatment by potential pathogens. For example, foods preserved by canning often become contaminated with the bacterium Clostridium botulinum, which produces the neurotoxin that causes botulism. Because C. botulinum can produce endospores that can survive harsh conditions, extreme temperatures and pressures must be used to eliminate the endospores. Other organisms may not require such extreme measures and can be controlled by a procedure such as washing clothes in a laundry machine.
Laboratory Biological Safety Levels
For researchers or laboratory personnel working with pathogens, the risks associated with specific pathogens determine the levels of cleanliness and control required. The Centers for Disease Control and Prevention (CDC) and the National Institutes of Health (NIH) have established four classification levels, called “biological safety levels” (BSLs). Various organizations around the world, including the World Health Organization (WHO) and the European Union (EU), use a similar classification scheme. According to the CDC, the BSL is determined by the agent’s infectivity, ease of transmission, and potential disease severity, as well as the type of work being done with the agent.[1]
Each BSL requires a different level of biocontainment to prevent contamination and spread of infectious agents to laboratory personnel and, ultimately, the community. For example, the lowest BSL, BSL-1, requires the fewest precautions because it applies to situations with the lowest risk for microbial infection.
BSL-1 agents are those that generally do not cause infection in healthy human adults. These include noninfectious bacteria, such as nonpathogenic strains of Escherichia coli and Bacillus subtilis, and viruses known to infect animals other than humans, such as baculoviruses (insect viruses). Because working with BSL-1 agents poses very little risk, few precautions are necessary. Laboratory workers use standard aseptic technique and may work with these agents at an open laboratory bench or table, wearing personal protective equipment (PPE) such as a laboratory coat, goggles, and gloves, as needed. Other than a sink for handwashing and doors to separate the laboratory from the rest of the building, no additional modifications are needed.
BIO 240 Control of Microbial Growth Lab Report
Agents classified as BSL-2 include those that pose moderate risk to laboratory workers and the community, and are typically “indigenous,” meaning that they are commonly found in that geographical area. These include bacteria such as Staphylococcus aureus and Salmonella spp., and viruses like hepatitis, mumps, and measles viruses. BSL-2 laboratories require additional precautions beyond those of BSL-1, including restricted access; required PPE, including a face shield in some circumstances; and the use of biological safety cabinets for procedures that may disperse agents through the air (called “aerosolization”). BSL-2 laboratories are equipped with self-closing doors, an eyewash station, and an autoclave, which is a specialized device for sterilizing materials with pressurized steam before use or disposal. BSL-1 laboratories may also have an autoclave.
BSL-3 agents have the potential to cause lethal infections by inhalation. These may be either indigenous or “exotic,” meaning that they are derived from a foreign location, and include pathogens such as Mycobacterium tuberculosis, Bacillus anthracis, West Nile virus, and human immunodeficiency virus (HIV). Because of the serious nature of the infections caused by BSL-3 agents, laboratories working with them require restricted access. Laboratory workers are under medical surveillance, possibly receiving vaccinations for the microbes with which they work. In addition to the standard PPE already mentioned, laboratory personnel in BSL-3 laboratories must also wear a respirator and work with microbes and infectious agents in a biological safety cabinet at all times. BSL-3 laboratories require a hands-free sink, an eyewash station near the exit, and two sets of self-closing and locking doors at the entrance. These laboratories are equipped with directional airflow, meaning that clean air is pulled through the laboratory from clean areas to potentially contaminated areas. This air cannot be recirculated, so a constant supply of clean air is required.
BSL-4 agents are the most dangerous and often fatal. These microbes are typically exotic, are easily transmitted by inhalation, and cause infections for which there are no treatments or vaccinations. Examples include Ebola virus and Marburg virus, both of which cause hemorrhagic fevers, and smallpox virus. There are only a small number of laboratories in the United States and around the world appropriately equipped to work with these agents. In addition to BSL-3 precautions, laboratory workers in BSL-4 facilities must also change their clothing on entering the laboratory, shower on exiting, and decontaminate all material on exiting. While working in the laboratory, they must either wear a full-body protective suit with a designated air supply or conduct all work within a biological safety cabinet with a high-efficiency particulate air (HEPA)-filtered air supply and a doubly HEPA-filtered exhaust. If wearing a suit, the air pressure within the suit must be higher than that outside the suit, so that if a leak in the suit occurs, laboratory air that may be contaminated cannot be drawn into the suit (Figure 1). The laboratory itself must be located either in a separate building or in an isolated portion of a building and have its own air supply and exhaust system, as well as its own decontamination system. The BSLs are summarized in Table 1. The CDC classifies infectious agents into four biosafety levels based on potential risk to laboratory personnel and the community. Each level requires a progressively greater level of precaution.

Don't use plagiarized sources. Get Your Custom Essay on
BIO 240 Control of Microbial Growth Lab Report
Get a 15% discount on this Paper
Order Essay
Quality Guaranteed

With us, you are either satisfied 100% or you get your money back-No monkey business

Check Prices
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know that being a student these days is hard. Because of this, our prices are some of the lowest on the market.

Instead, we offer perks, discounts, and free services to enhance your experience.
Sign up, place your order, and leave the rest to our professional paper writers in less than 2 minutes.
step 1
Upload assignment instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
s
Get personalized services with My Paper Support
One writer for all your papers
You can select one writer for all your papers. This option enhances the consistency in the quality of your assignments. Select your preferred writer from the list of writers who have handledf your previous assignments
Same paper from different writers
Are you ordering the same assignment for a friend? You can get the same paper from different writers. The goal is to produce 100% unique and original papers
Copy of sources used
Our homework writers will provide you with copies of sources used on your request. Just add the option when plaing your order
What our partners say about us
We appreciate every review and are always looking for ways to grow. See what other students think about our do my paper service.
Medicine
Great job! Thank you.
Customer 452707, May 29th, 2022
Other
GREAT
Customer 452813, June 20th, 2022
Nursing
Thank you so much for being the best website for assignment help.
Customer 452635, June 24th, 2022
Human Resources Management (HRM)
Thank you
Customer 452701, July 26th, 2023
Nursing
Work is always perfectly done.
Customer 452707, January 11th, 2024
Nursing
Great Work!
Customer 452453, April 26th, 2023
Other
Great
Customer 452813, January 21st, 2024
Criminal Justice
always great!
Customer 452465, February 23rd, 2021
Social Work and Human Services
Excellent! Done earlier than needed and with more sources than needed! Great work!
Customer 452485, August 22nd, 2021
Nursing
Paid for the paper to be completed 5 days prior than the day I received the paper.
Customer 452693, July 13th, 2022
Other
GREAT
Customer 452813, July 3rd, 2022
Nursing
Looks good. Thank you!!
Customer 452525, April 27th, 2022
Enjoy affordable prices and lifetime discounts
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Order Now Order in Chat

We now help with PROCTORED EXAM. Chat with a support agent for more details