Discussion: Research and Evidence

Discussion: Research and Evidence ORDER NOW FOR CUSTOMIZED AND ORIGINAL ESSAY PAPERS ON Discussion: Research and Evidence In this assignment you find evidence from literature and journals that supports the need for your proposed change to your problem: In patients who goes to the ED for medical care, does the impact of medical waste affect them more, as opposed to not going to ED, and going to their primary care physician? Discussion: Research and Evidence PROPOSAL: To identify ways how to eliminate healthcare waste in Emergency Department to improve patient care. INSTRUCTION: Find a minimum of Two original research articles to support your project and summarize EACH article in no less than 350 words. The articles must be: Peer reviewed Recent (published within 5 years) Statistically significant 1. When completing your summaries of the articles, DO NOT USE ANY EXACT WORDS . The summaries of the articles must be 100% IN YOUR OWN WORDS and submitted as a WORD document. Don’t forget to cite the intellectual property of the author per APA format. 2. All references must be listed on a reference page in correct APA format. Discussion: Research and Evidence Format assignment in the following: A word paper of article summaries formatted in APA format ( to include title page and reference page). **You can summarize all articles in one word document with reference page included. wk_3_article_5.pdf wk_3_article_2.pdf wk_3_grading_rubric.docx SIGNA VITAE 2016; 12(1): 52-57 Improving Emergency Department Capacity Efficiency HANNA LEHTONEN1, TIMO LUKKARINEN2,4, VESA KÄMÄRÄINEN1, VELI-PEKKA RAUTAVA2, PETRI PARVIAINEN1, ARI PALOMÄKI2,5 Department of Industrial Engineering and Management, Aalto University, School of Science, Aalto, Finland Department of Emergency Medicine, Kanta-Häme Central Hospital, Hämeenlinna, Finland 3 Health Care Services, City of Hämeenlinna, Hämeenlinna, Finland 4 Helsinki Social Services and Health Care, Haartman Hospital, Helsinki, Finland 5 University of Tampere, School of Medicine, Finland 1 2 Corresponding author: Timo Lukkarinen Department of Emergency Medicine Kanta-Häme Central Hospital Ahvenistontie 20 FI-13530 Hämeenlinna, Finland Phone: +358 400 412 217, Fax: +358-3-629 4544 E-mail: [email protected] ABSTRACT Objective. The demand for emergency services has risen dramatically around the world. Many Emergency Departments (EDs) have signs of low capacity efficiency (which we define as the rate at which a production facility with limited resources can convert input into output); insufficient resources (staffing, equipment, facilities), inefficient ways to use them, or both. Our purpose was to investigate how to improve ED capacity efficiency through layout planning and present some novel ideas of ED bottlenecks. Methods. We adopted an industrial engineering perspective to one Finnish ED as a case example. In contrary to a simple case report we used more generalizable methods and demand-supply chain analysis to improve capacity efficiency. Results. This study resulted in concrete and generalizable improvements of capacity efficiency concerning both ED premises and staffing. The former includes designing patient locations, organizing beds, improving space usage and optimizing an ED layout. The latter identified the demand for different specialties and optimal allocation of nursing staff. Conclusion.Discussion: Research and Evidence We present a rather unique combination of ways to enhance ED functionality by using methods of industrial engineering. 52 | SIGNA VITAE Key words: capacity efficiency, emergency department, operations management, healthcare INTRODUCTION A trend of increasing emergency service demand has been observed internationally. (1-3) At the same time Emergency Departments (ED) have increased their importance as a part of the access system through which patients enter inpatient clinics. (4) A constant increase of demand and a continuous need of services create a corresponding need to increase and develop the supply of emergency services without giving any room for cost cuttings. (5,6) Since the new management principles of the 1980s and 90s, the development of healthcare process management has had direct and predictable efficiency effects. (79) Still, after a certain point, the facilities and other resources can’t keep up with the pace, and as signs of low capacity efficiency appear, many EDs have either insufficient resources or inefficient ways to use them. (10,11) A lot has already been investigated in terms of resource allocation, process standardization, patient classification and prioritization, queuing discipline, implementation of electronic systems and specific process improvements. (11-22) However, there seem to be no studies that have improved ED functions through operations management based layout planning. Prior to this research, the case specific perspective of improvement in ED efficiency has had a seriously hampering effect on the generalizability of ED process re-engineering on an universal level, though Emergency Medicine (EM) itself can be seen as rather universal across health systems. (23) In this research, we adopted an industrial engineering perspective to one Finnish ED as a case example of improving capacity efficiency through demand-supply chain analysis. We share the definition of capacity efficiency as the rate at which a production facility can convert input into output. (24,25) This definition measures efficiency with limited resources. We hope to present methods that can be more universally generalized than previously. Our purpose is to investigate how to improve ED functions through layout planning and present a few novel ideas of modern day ED bottlenecks (i.e. recumbent patient places, nursing staff and physicians belonging to different specialties). MATERIALS AND METHODS During the field work of our study the county of Kanta-Häme was on the verge of organizational renewal of emergency services. Discussion: Research and Evidence The political decision to build a new ED had already been made, a process originally starting four years before completion. In addition, another main goal of this renewal was to gather all emergency services into one place by integrating primary care emergency duties to the secondary care ED. This new ED was designed with capacity efficiency in mind. The fieldwork of this study lasted eight months, and its results were later utilized in the planning process of the new ED. Quick analyses revealed that the old ED had several drawbacks in its capacity efficiency. First of all, it was designed in the late 1970’s for predominantly ambulatory patients, counting on a total of only 12 000 annual visits. According to staff, there had been a major shift from ambulatory to recumbent patients over the years. The other observation concerned the long length of stay (LoS). Critical resources had to be either inadequate or inefficiently organized since a long wait and LoS prevailed. There had been no earlier studies of capacity efficiency in this ED. To enhance capacity efficiency we decided to search improvement possibilities in layout design, beds, use of nursing staff and physicians belonging to different specialties. We were able to formulate the general research question as follows: How should ED resources be reorganized in terms of premises and staffing in order to increase capacity efficiency? Analytically, we approach capacity efficiency from two aspects, a) resource efficiency (through purely technical efficiency as well as utilization rate) and b) resource availability. Discussion: Research and Evidence Resource efficiency illustrates how well resources are used. In other words how much output is achieved from a given amount of input (i.e. resources). Another typical key figure for resource efficiency is the utilization rate. It tells how much of the potential capacity is used. Resource availability tells how much of the demand is allocated per one resource unit. It tends to have an optimal level rather than an aimed tendency towards a big or small value. Greater values are a sign of insufficient capacity and smaller values of excess capacity. However, the optimal levels and ways to figure them out are very case-specific. One may wish to use for instance simulation or linear optimization in order to determine optimal levels. To increase capacity efficiency one needs to make corrective actions like reorganizing existing, enhancing the availability or adding or reducing resources. Since mixed-method case studies are suitable to investigate complex real life events, (26) our semi-triangulative research approach contained the following three methods to gather the data. Firstly, the key ED employees were interviewed to get the overall picture of the functions and problems. In addition, based on these interviews the numeric data needs were identified. Secondly, hospital databases were searched for all possible patient details. Thirdly, a two-week patient follow-up was organized to acquire additive field information concerning ED processes. Interviews, done on several different employees to guarantee consistency and reliability, encouraged studying some parts of the functions more carefully. The following numeric data needs were identified: daily demand for emergency services, patients’ arrival times, lengths of stay, the number of patients that needed a bed during their stay, the number of different spaces used during an ED stay, the number of bed transportations, and the demand for different specialties. Discussion: Research and Evidence The number of ED visits and patients’ arrival times were revealed from hospital databases. The data were collected over three months, January, March and September with a total of 4463 observations. A manual follow-up was carried out from Nov 24th to Dec 10th to gather the number of different spaces used during an ED stay. The number of bed transportations and the utilization of different specialties were documented by our nursing staff for 491 patients, which correspond to 80% (491/614) of all ED admissions during the period. All new data were confirmed for consistency prior to adding them to the database. Statistical Methods All the data were filed in Microsoft Office Excel. A daily cumulative distribution chart of patient visits was calculated as well as distribution charts of hourly patient arrivals and hourly LoSs. The daily average number of recumbent patients was calculated as a percentage of the total daily visits. For space usage and demand for consultative support by specialty services, a percentage of patients in corresponding areas or specialties were divided by the total amount of patients. This method was applied to each meaningful separate space in the ED as well as to each specialty. The need for beds was calculated within MATLAB® 6.5 environment. Two vectors were created, one for average hourly LoS distribution and the other for hourly patient arrival time distribution. These two vectors were then convoluted and finally multiplied with the estimated amount of daily patients and the percentage of recumbent patients.Discussion: Research and Evidence Since daily bed needs overlap because of long LoSs and aroundthe-clock arrival times, the calculations were run for consecutive three days to see the accumulation of patients bed needs. Following the previous steps one can adjust the desired bed coverage level by choosing the desired daily patient amount from a cumulative distribution function of daily patient volumes. In our case, to make it even simpler and to present the bed demand, the maximal need for beds was finally plotted against different levels of patient volumes. RESULTS At the time our case hospital, Kanta-Häme Central Hospital, had 18 000 annual emergency visits providing secondary care for 166 000 people. The ED area was 940 m2 and had 12 primary beds for recumbent patients. In addition there were two observation rooms: six places for men and six for women. There were also two waiting lobbies for ambulatory patients. Recurrent overcrowding was handled by placing extra beds wherever they fit. Two physicians in training, an internist and a surgeon, handled the emergency duties. Although consultative support was available to the physicians, it varied by specialty and was given either by phone or by visit. Each shift was staffed with one porter and four to five registered and practical nurses. DESIGNING ED PREMISES 1. Designing the patient places according to patient types Analysis revealed that the recumbent paSIGNA VITAE | 53 tients (76.4%, 375/491) were the dominating patient group and the primary beds were calculated to cover only 65% of the cumulative daily demand. Discussion: Research and Evidence Meanwhile the observation rooms were seen to be too far from the functional heart of the ED. To avoid the noticeable risk of bed shortages the utilization rate was to be lowered to or below 85% as supported earlier. (4) Against this background we calculated that the supply of 15 primary beds would avoid the serious shortage problems 85% of the time, and the addition of only 2 beds to the total number of 17 primary beds would help to meet the demand at all times without special arrangements (figure 1). By increasing the number of beds to the proper level, the ED would benefit from increased customer and employee satisfactions with the improvement of the supply of services. out of 19 different spaces were used at most by 15% (75/491) of the ED patients (figure 2). Thus, the utilization rates were mostly remarkably low. The least used places indicated low capacity efficiency, but due to special functions and inevitable existence the utilization rates of some of them (like isolation room and shower) did not present low capacity efficiency. Figure 2. Percentage of emergency departments (ED) patients that used different spaces (frequencies in parenthesis). The results spoke for the idea of multipurpose facilities, when it was clinically possible to use the same facilities for different functions. For example a shared consultation room for several specialties giving consultative support to the emergency physicians. Figure 1. Bed demand as a function of patients’ daily demand distribution. Calculations are based on current demand. 2. Organizing the beds Our analysis revealed that all beds should be gathered into one shared patient area, enhancing direct visual surveillance and reducing transportation needs. Patients could be provided with intimacy through removable curtains or walls. Few places in the front of the patient area should be more heavily equipped for the patients in need of more intensive care, a design concept similar to business class in aviation. Discussion: Research and Evidence As a further improvement, primary beds could be located in two areas, one for medical and the other for surgical patients. These transformations would increase the ED capacity efficiency in respect to resource efficiency by simplifying the processes and quality of care through decreasing need for patient transportations. 3. Improving space usage Analysis of space usage revealed that 14 54 | SIGNA VITAE Combining procedure rooms (suturing and plaster rooms) was not clinically possible in this case, but it might be relevant in bigger EDs where the variety of different procedure rooms is greater. Altogether, these enhancements would increase utilization rates and save space for other uses, i.e. they would increase resource efficiency and thus capacity efficiency. Resource savings in space could be utilized by for example bringing more functions needed by the ED patients to the emergency facilities. 4. Making the ED layout more efficient The main problem lied in impractically designed facilities, causing numerous long transportations and poor visual surveillance. Difficulties in visibility were a safety risk because of possible worsening of patients’ conditions, increased violence and unrest among patients. As a solution, we designed a layout sketch highlighting the most important connections between different ED functions (figure 3). The priorities were mapped through interviews and data analysis. The presented sketch is not a floor plan, but an idea of how different connections could be realized. All beds are centered and divided into areas for medical and surgical patients. Opposite to the two patient areas are the corresponding consultation rooms, reducing transportations to consultations and back. Figure 3. Emergency departments (ED) layout sketch. Both consultation rooms provide a connection to resuscitation and the surgeon has his suturing and plaster rooms close by. Visibility and situation awareness are greatly improved because everything can now be seen from the ED heart. As a new feature, the security personnel are brought inside the ED to ensure its safety. Discussion: Research and Evidence This arrangement guarantees employees better mobility and improves capacity efficiency through resource efficiency by simplifying processes easing staff ’s work and yielding time savings. DESIGNING ED STAFFING 1. Identifying the demand for different specialties As said, the ED had two physicians in training, i.e. an internist and a surgeon, on duty and available at all times treating all patients. In addition to his own specialty, the internist took care of neurological, pulmonary, psychiatric, physiatry as well as dermatologic and allergic problems. Correspondingly, the surgeon also treated gynecological, laryngological, and ophthalmological cases in addition to general surgical patients. Different specialists from other parts of the hospital, whose availability varied greatly, gave their consultative support to the duty officers. The analysis showed that the primary duty officers were almost equally loaded, the internist in training having only slightly more patients (55.2% of total, 271/491), indicating no need for a rearrangement of specialty division. After internal medicine and surgery, the most common problems were among the specialties of pediatrics and neurology, 9.6% (47/491) and 8.6% (42/491) respectively. These specialties constituted almost 30% (73/272) of all specialist consultations needed (figure 4). pected to be improved without interfering any interest groups’ procedures. Capacity efficiency could be improved through enhancing the resource availability of external resources. Better supply of services was planned to reduce patients’ lead-times and eventually length of stay, improving customer satisfaction and causing cost savings. 2. Nurse staffing in accordance to patient demand The daily work of nurses in the ED was arranged in three equally staffed shifts. The only exception was the night shift, which had one nurse less than the others. Figure 4. Demand for consultative support by specialty (frequencies in parenthesis). The absolute number of consultation contacts was remarkably high because half of all cases required consultative support of a specialist during their treatment process. To avoid prolonged lengths of stays of pediatric and neurological patients, the hospital was obliged to improve the availability of these specialties in terms of consultative ED support.Discussion: Research and Evidence In general, ED functions cannot be ex- Our analysis revealed distinct trends in the patients’ arrival distribution, implying a need for reallocating nursing staff (figure 5). A few employees should be assigned from night to day shift. To back up this solution, the ED could set few nurses into standby mode for the night. Changes in the staffing structure were planned to increase the utilization rate since fewer nurses would handle the same number of patients. This way the resource efficiency and, in wider terms, the capacity efficiency could be enhanced. It can be assumed that a greater number of nurses during the day shift would reduce patients’ lead-times. Of course the presence of other bottlenecks (e.g. physician, X-ray) might reduce the impact. Another aspect was that transferring work away from the night would yield in cost savings. Figure 5. Hour specific arrival distribution. DISCUSSION In this study we revealed improvements of ED functions through two perspectives of capacity efficiency: resource efficiency and resource availability. Demand-supply analysis was used as a method to analyze current capacity efficiency and to find improvement ideas. We revealed several concrete enhancements in respect to premises and staffing, which a local hospital administration can implement without legislative changes (table 1). Table 1. Enhancements to improve capacity efficiency. Improvement Impact Degree of change Definition of the adequate bed capacity, along with correct Increase in resource availability patient types Moderate Establishment of a shared patient area for recumberrant patients Increase in resource efficiency by process simplifications Significant Establishment of multipurpose facilities, combine fairly unused places Increase in utilization rates and thus in resource efficiency Moderate Design of ER layout to better meet the process requireImproved resource efficiency through simplified processes Significant ments, bring functionally related spaces close to each other Enhancement in the availability of specialties’ consultative Improvements in resource availability support Moderate Reallocation of nursing staff into shifts in accordance with Improvements in resource efficiency through higher hour specific patient demand utilization rates Moderate Our perspective of analyzing the layout design of the ED has been rather undis … Get a 10 % discount on an order above $ 100 Use the following coupon code : NURSING10

Read more

Discussion: Research and Evidence

Discussion: Research and Evidence ORDER NOW FOR CUSTOMIZED AND ORIGINAL ESSAY PAPERS ON Discussion: Research and Evidence In this assignment you find evidence from literature and journals that supports the need for your proposed change to your problem: In patients who goes to the ED for medical care, does the impact of medical waste affect them more, as opposed to not going to ED, and going to their primary care physician? Discussion: Research and Evidence PROPOSAL: To identify ways how to eliminate healthcare waste in Emergency Department to improve patient care. INSTRUCTION: Find a minimum of Two original research articles to support your project and summarize EACH article in no less than 350 words. The articles must be: Peer reviewed Recent (published within 5 years) Statistically significant 1. When completing your summaries of the articles, DO NOT USE ANY EXACT WORDS . The summaries of the articles must be 100% IN YOUR OWN WORDS and submitted as a WORD document. Don’t forget to cite the intellectual property of the author per APA format. 2. All references must be listed on a reference page in correct APA format. Discussion: Research and Evidence Format assignment in the following: A word paper of article summaries formatted in APA format ( to include title page and reference page). **You can summarize all articles in one word document with reference page included. wk_3_article_5.pdf wk_3_article_2.pdf wk_3_grading_rubric.docx SIGNA VITAE 2016; 12(1): 52-57 Improving Emergency Department Capacity Efficiency HANNA LEHTONEN1, TIMO LUKKARINEN2,4, VESA KÄMÄRÄINEN1, VELI-PEKKA RAUTAVA2, PETRI PARVIAINEN1, ARI PALOMÄKI2,5 Department of Industrial Engineering and Management, Aalto University, School of Science, Aalto, Finland Department of Emergency Medicine, Kanta-Häme Central Hospital, Hämeenlinna, Finland 3 Health Care Services, City of Hämeenlinna, Hämeenlinna, Finland 4 Helsinki Social Services and Health Care, Haartman Hospital, Helsinki, Finland 5 University of Tampere, School of Medicine, Finland 1 2 Corresponding author: Timo Lukkarinen Department of Emergency Medicine Kanta-Häme Central Hospital Ahvenistontie 20 FI-13530 Hämeenlinna, Finland Phone: +358 400 412 217, Fax: +358-3-629 4544 E-mail: [email protected] ABSTRACT Objective. The demand for emergency services has risen dramatically around the world. Many Emergency Departments (EDs) have signs of low capacity efficiency (which we define as the rate at which a production facility with limited resources can convert input into output); insufficient resources (staffing, equipment, facilities), inefficient ways to use them, or both. Our purpose was to investigate how to improve ED capacity efficiency through layout planning and present some novel ideas of ED bottlenecks. Methods. We adopted an industrial engineering perspective to one Finnish ED as a case example. In contrary to a simple case report we used more generalizable methods and demand-supply chain analysis to improve capacity efficiency. Results. This study resulted in concrete and generalizable improvements of capacity efficiency concerning both ED premises and staffing. The former includes designing patient locations, organizing beds, improving space usage and optimizing an ED layout. The latter identified the demand for different specialties and optimal allocation of nursing staff. Conclusion.Discussion: Research and Evidence We present a rather unique combination of ways to enhance ED functionality by using methods of industrial engineering. 52 | SIGNA VITAE Key words: capacity efficiency, emergency department, operations management, healthcare INTRODUCTION A trend of increasing emergency service demand has been observed internationally. (1-3) At the same time Emergency Departments (ED) have increased their importance as a part of the access system through which patients enter inpatient clinics. (4) A constant increase of demand and a continuous need of services create a corresponding need to increase and develop the supply of emergency services without giving any room for cost cuttings. (5,6) Since the new management principles of the 1980s and 90s, the development of healthcare process management has had direct and predictable efficiency effects. (79) Still, after a certain point, the facilities and other resources can’t keep up with the pace, and as signs of low capacity efficiency appear, many EDs have either insufficient resources or inefficient ways to use them. (10,11) A lot has already been investigated in terms of resource allocation, process standardization, patient classification and prioritization, queuing discipline, implementation of electronic systems and specific process improvements. (11-22) However, there seem to be no studies that have improved ED functions through operations management based layout planning. Prior to this research, the case specific perspective of improvement in ED efficiency has had a seriously hampering effect on the generalizability of ED process re-engineering on an universal level, though Emergency Medicine (EM) itself can be seen as rather universal across health systems. (23) In this research, we adopted an industrial engineering perspective to one Finnish ED as a case example of improving capacity efficiency through demand-supply chain analysis. We share the definition of capacity efficiency as the rate at which a production facility can convert input into output. (24,25) This definition measures efficiency with limited resources. We hope to present methods that can be more universally generalized than previously. Our purpose is to investigate how to improve ED functions through layout planning and present a few novel ideas of modern day ED bottlenecks (i.e. recumbent patient places, nursing staff and physicians belonging to different specialties). MATERIALS AND METHODS During the field work of our study the county of Kanta-Häme was on the verge of organizational renewal of emergency services. Discussion: Research and Evidence The political decision to build a new ED had already been made, a process originally starting four years before completion. In addition, another main goal of this renewal was to gather all emergency services into one place by integrating primary care emergency duties to the secondary care ED. This new ED was designed with capacity efficiency in mind. The fieldwork of this study lasted eight months, and its results were later utilized in the planning process of the new ED. Quick analyses revealed that the old ED had several drawbacks in its capacity efficiency. First of all, it was designed in the late 1970’s for predominantly ambulatory patients, counting on a total of only 12 000 annual visits. According to staff, there had been a major shift from ambulatory to recumbent patients over the years. The other observation concerned the long length of stay (LoS). Critical resources had to be either inadequate or inefficiently organized since a long wait and LoS prevailed. There had been no earlier studies of capacity efficiency in this ED. To enhance capacity efficiency we decided to search improvement possibilities in layout design, beds, use of nursing staff and physicians belonging to different specialties. We were able to formulate the general research question as follows: How should ED resources be reorganized in terms of premises and staffing in order to increase capacity efficiency? Analytically, we approach capacity efficiency from two aspects, a) resource efficiency (through purely technical efficiency as well as utilization rate) and b) resource availability. Discussion: Research and Evidence Resource efficiency illustrates how well resources are used. In other words how much output is achieved from a given amount of input (i.e. resources). Another typical key figure for resource efficiency is the utilization rate. It tells how much of the potential capacity is used. Resource availability tells how much of the demand is allocated per one resource unit. It tends to have an optimal level rather than an aimed tendency towards a big or small value. Greater values are a sign of insufficient capacity and smaller values of excess capacity. However, the optimal levels and ways to figure them out are very case-specific. One may wish to use for instance simulation or linear optimization in order to determine optimal levels. To increase capacity efficiency one needs to make corrective actions like reorganizing existing, enhancing the availability or adding or reducing resources. Since mixed-method case studies are suitable to investigate complex real life events, (26) our semi-triangulative research approach contained the following three methods to gather the data. Firstly, the key ED employees were interviewed to get the overall picture of the functions and problems. In addition, based on these interviews the numeric data needs were identified. Secondly, hospital databases were searched for all possible patient details. Thirdly, a two-week patient follow-up was organized to acquire additive field information concerning ED processes. Interviews, done on several different employees to guarantee consistency and reliability, encouraged studying some parts of the functions more carefully. The following numeric data needs were identified: daily demand for emergency services, patients’ arrival times, lengths of stay, the number of patients that needed a bed during their stay, the number of different spaces used during an ED stay, the number of bed transportations, and the demand for different specialties. Discussion: Research and Evidence The number of ED visits and patients’ arrival times were revealed from hospital databases. The data were collected over three months, January, March and September with a total of 4463 observations. A manual follow-up was carried out from Nov 24th to Dec 10th to gather the number of different spaces used during an ED stay. The number of bed transportations and the utilization of different specialties were documented by our nursing staff for 491 patients, which correspond to 80% (491/614) of all ED admissions during the period. All new data were confirmed for consistency prior to adding them to the database. Statistical Methods All the data were filed in Microsoft Office Excel. A daily cumulative distribution chart of patient visits was calculated as well as distribution charts of hourly patient arrivals and hourly LoSs. The daily average number of recumbent patients was calculated as a percentage of the total daily visits. For space usage and demand for consultative support by specialty services, a percentage of patients in corresponding areas or specialties were divided by the total amount of patients. This method was applied to each meaningful separate space in the ED as well as to each specialty. The need for beds was calculated within MATLAB® 6.5 environment. Two vectors were created, one for average hourly LoS distribution and the other for hourly patient arrival time distribution. These two vectors were then convoluted and finally multiplied with the estimated amount of daily patients and the percentage of recumbent patients.Discussion: Research and Evidence Since daily bed needs overlap because of long LoSs and aroundthe-clock arrival times, the calculations were run for consecutive three days to see the accumulation of patients bed needs. Following the previous steps one can adjust the desired bed coverage level by choosing the desired daily patient amount from a cumulative distribution function of daily patient volumes. In our case, to make it even simpler and to present the bed demand, the maximal need for beds was finally plotted against different levels of patient volumes. RESULTS At the time our case hospital, Kanta-Häme Central Hospital, had 18 000 annual emergency visits providing secondary care for 166 000 people. The ED area was 940 m2 and had 12 primary beds for recumbent patients. In addition there were two observation rooms: six places for men and six for women. There were also two waiting lobbies for ambulatory patients. Recurrent overcrowding was handled by placing extra beds wherever they fit. Two physicians in training, an internist and a surgeon, handled the emergency duties. Although consultative support was available to the physicians, it varied by specialty and was given either by phone or by visit. Each shift was staffed with one porter and four to five registered and practical nurses. DESIGNING ED PREMISES 1. Designing the patient places according to patient types Analysis revealed that the recumbent paSIGNA VITAE | 53 tients (76.4%, 375/491) were the dominating patient group and the primary beds were calculated to cover only 65% of the cumulative daily demand. Discussion: Research and Evidence Meanwhile the observation rooms were seen to be too far from the functional heart of the ED. To avoid the noticeable risk of bed shortages the utilization rate was to be lowered to or below 85% as supported earlier. (4) Against this background we calculated that the supply of 15 primary beds would avoid the serious shortage problems 85% of the time, and the addition of only 2 beds to the total number of 17 primary beds would help to meet the demand at all times without special arrangements (figure 1). By increasing the number of beds to the proper level, the ED would benefit from increased customer and employee satisfactions with the improvement of the supply of services. out of 19 different spaces were used at most by 15% (75/491) of the ED patients (figure 2). Thus, the utilization rates were mostly remarkably low. The least used places indicated low capacity efficiency, but due to special functions and inevitable existence the utilization rates of some of them (like isolation room and shower) did not present low capacity efficiency. Figure 2. Percentage of emergency departments (ED) patients that used different spaces (frequencies in parenthesis). The results spoke for the idea of multipurpose facilities, when it was clinically possible to use the same facilities for different functions. For example a shared consultation room for several specialties giving consultative support to the emergency physicians. Figure 1. Bed demand as a function of patients’ daily demand distribution. Calculations are based on current demand. 2. Organizing the beds Our analysis revealed that all beds should be gathered into one shared patient area, enhancing direct visual surveillance and reducing transportation needs. Patients could be provided with intimacy through removable curtains or walls. Few places in the front of the patient area should be more heavily equipped for the patients in need of more intensive care, a design concept similar to business class in aviation. Discussion: Research and Evidence As a further improvement, primary beds could be located in two areas, one for medical and the other for surgical patients. These transformations would increase the ED capacity efficiency in respect to resource efficiency by simplifying the processes and quality of care through decreasing need for patient transportations. 3. Improving space usage Analysis of space usage revealed that 14 54 | SIGNA VITAE Combining procedure rooms (suturing and plaster rooms) was not clinically possible in this case, but it might be relevant in bigger EDs where the variety of different procedure rooms is greater. Altogether, these enhancements would increase utilization rates and save space for other uses, i.e. they would increase resource efficiency and thus capacity efficiency. Resource savings in space could be utilized by for example bringing more functions needed by the ED patients to the emergency facilities. 4. Making the ED layout more efficient The main problem lied in impractically designed facilities, causing numerous long transportations and poor visual surveillance. Difficulties in visibility were a safety risk because of possible worsening of patients’ conditions, increased violence and unrest among patients. As a solution, we designed a layout sketch highlighting the most important connections between different ED functions (figure 3). The priorities were mapped through interviews and data analysis. The presented sketch is not a floor plan, but an idea of how different connections could be realized. All beds are centered and divided into areas for medical and surgical patients. Opposite to the two patient areas are the corresponding consultation rooms, reducing transportations to consultations and back. Figure 3. Emergency departments (ED) layout sketch. Both consultation rooms provide a connection to resuscitation and the surgeon has his suturing and plaster rooms close by. Visibility and situation awareness are greatly improved because everything can now be seen from the ED heart. As a new feature, the security personnel are brought inside the ED to ensure its safety. Discussion: Research and Evidence This arrangement guarantees employees better mobility and improves capacity efficiency through resource efficiency by simplifying processes easing staff ’s work and yielding time savings. DESIGNING ED STAFFING 1. Identifying the demand for different specialties As said, the ED had two physicians in training, i.e. an internist and a surgeon, on duty and available at all times treating all patients. In addition to his own specialty, the internist took care of neurological, pulmonary, psychiatric, physiatry as well as dermatologic and allergic problems. Correspondingly, the surgeon also treated gynecological, laryngological, and ophthalmological cases in addition to general surgical patients. Different specialists from other parts of the hospital, whose availability varied greatly, gave their consultative support to the duty officers. The analysis showed that the primary duty officers were almost equally loaded, the internist in training having only slightly more patients (55.2% of total, 271/491), indicating no need for a rearrangement of specialty division. After internal medicine and surgery, the most common problems were among the specialties of pediatrics and neurology, 9.6% (47/491) and 8.6% (42/491) respectively. These specialties constituted almost 30% (73/272) of all specialist consultations needed (figure 4). pected to be improved without interfering any interest groups’ procedures. Capacity efficiency could be improved through enhancing the resource availability of external resources. Better supply of services was planned to reduce patients’ lead-times and eventually length of stay, improving customer satisfaction and causing cost savings. 2. Nurse staffing in accordance to patient demand The daily work of nurses in the ED was arranged in three equally staffed shifts. The only exception was the night shift, which had one nurse less than the others. Figure 4. Demand for consultative support by specialty (frequencies in parenthesis). The absolute number of consultation contacts was remarkably high because half of all cases required consultative support of a specialist during their treatment process. To avoid prolonged lengths of stays of pediatric and neurological patients, the hospital was obliged to improve the availability of these specialties in terms of consultative ED support.Discussion: Research and Evidence In general, ED functions cannot be ex- Our analysis revealed distinct trends in the patients’ arrival distribution, implying a need for reallocating nursing staff (figure 5). A few employees should be assigned from night to day shift. To back up this solution, the ED could set few nurses into standby mode for the night. Changes in the staffing structure were planned to increase the utilization rate since fewer nurses would handle the same number of patients. This way the resource efficiency and, in wider terms, the capacity efficiency could be enhanced. It can be assumed that a greater number of nurses during the day shift would reduce patients’ lead-times. Of course the presence of other bottlenecks (e.g. physician, X-ray) might reduce the impact. Another aspect was that transferring work away from the night would yield in cost savings. Figure 5. Hour specific arrival distribution. DISCUSSION In this study we revealed improvements of ED functions through two perspectives of capacity efficiency: resource efficiency and resource availability. Demand-supply analysis was used as a method to analyze current capacity efficiency and to find improvement ideas. We revealed several concrete enhancements in respect to premises and staffing, which a local hospital administration can implement without legislative changes (table 1). Table 1. Enhancements to improve capacity efficiency. Improvement Impact Degree of change Definition of the adequate bed capacity, along with correct Increase in resource availability patient types Moderate Establishment of a shared patient area for recumberrant patients Increase in resource efficiency by process simplifications Significant Establishment of multipurpose facilities, combine fairly unused places Increase in utilization rates and thus in resource efficiency Moderate Design of ER layout to better meet the process requireImproved resource efficiency through simplified processes Significant ments, bring functionally related spaces close to each other Enhancement in the availability of specialties’ consultative Improvements in resource availability support Moderate Reallocation of nursing staff into shifts in accordance with Improvements in resource efficiency through higher hour specific patient demand utilization rates Moderate Our perspective of analyzing the layout design of the ED has been rather undis … Get a 10 % discount on an order above $ 100 Use the following coupon code : NURSING10

Read more
Enjoy affordable prices and lifetime discounts
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Order Now Order in Chat

Start off on the right foot this semester. Get expert-written solutions at a 20% discount